The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana.

نویسندگان

  • Noëllie Journot-Catalino
  • Imre E Somssich
  • Dominique Roby
  • Thomas Kroj
چکیده

Transcription factors are believed to play a pivotal role in the activation and fine-tuning of plant defense responses, but little is known about the exact function of individual transcription factors in this process. We analyzed the role of the IId subfamily of WRKY transcription factors in the regulation of basal resistance to Pseudomonas syringae pv tomato (Pst). The expression of four members of the subfamily was induced upon challenge with virulent and avirulent strains of Pst. Mutant analyses revealed that loss of WRKY11 function increased resistance toward avirulent and virulent Pst strains and that resistance was further enhanced in wrky11 wrky17 double mutant plants. Thus, WRKY11 and WRKY17 act as negative regulators of basal resistance to Pst. Genome-wide expression analysis and expression studies of selected genes in single and double mutants demonstrated that both transcription factors modulate transcriptional changes in response to pathogen challenge. Depending on the target gene, WRKY11 and WRKY17 act either specifically or in a partially redundant manner. We demonstrate complex cross-regulation within the IId WRKY subfamily and provide evidence that both WRKY transcription factors are involved in the regulation of Pst-induced jasmonic acid-dependent responses. These results provide genetic evidence for the importance of WRKY11 and WRKY17 in plant defense.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcription factors WRKY70 and WRKY11 served as regulators in rhizobacterium Bacillus cereus AR156-induced systemic resistance to Pseudomonas syringae pv. tomato DC3000 in Arabidopsis.

The activation of both the SA and JA/ETsignalling pathways may lead to more efficient general and broad resistance to Pst DC3000 by non-pathogenic rhizobacteria. However, the mechanisms that govern this simultaneous activation are unclear. Using Arabidopsis as a model system, two transcription factors, WRKY11 and WRKY70, were identified as important regulators involved in Induced Systemic Resis...

متن کامل

Negative control of Strictisidine synthase like-7 gene on salt stress resistance in Arabidopsis thaliana

Strictosidine synthase-like (SSL) is a group of gene families in the Arabidopsis genome, which whose orthologues in other plants are key enzymes in mono-terpenoid indole-alkaloid biosynthesis pathway. The SSL7 is upregulated upon treatments of Arabidopsis plants with signaling molecules such as SA, methyl jasmonate and ethylene. To find the functional role of the gene, a T-DNA-mediated knockout...

متن کامل

A mutation in negative regulator of basal resistance WRKY17 of Arabidopsis increases susceptibility to Agrobacterium-mediated genetic transformation

Agrobacterium is a phytopathogenic bacterium that induces crown gall disease in many plant species by transferring and integrating a segment of its own DNA (T-DNA) into its host genome. Whereas Agrobacterium usually does not trigger an extensive defense response in its host plants, it induces the expression of several defense-related genes and activates plant stress reactions. In the complex in...

متن کامل

The Beet Cyst Nematode Heterodera schachtii Modulates the Expression of WRKY Transcription Factors in Syncytia to Favour Its Development in Arabidopsis Roots

Cyst nematodes invade the roots of their host plants as second stage juveniles and induce a syncytium which is the only source of nutrients throughout their life. A recent transcriptome analysis of syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots has shown that thousands of genes are up-regulated or down-regulated in syncytia as compared to root segments from...

متن کامل

Isolation of Brassica napus MYC2 gene and analysis of its expression in response to water deficit stress

Manipulation of stress related transcription factors to improve plant stress tolerance is a major goal of current biotechnology researches. MYC2 gene encodes a key stress-related transcription factor involved in Jasmonate (JA) and abscisic acid (ABA) signaling pathways in Arabidopsis. Brassica napus, as a globally important oilseed crop, is a close relative of Arabidopsis.  In the present study...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Plant cell

دوره 18 11  شماره 

صفحات  -

تاریخ انتشار 2006